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Solutions are obtained for the self-similar form of the incompressible boundary- 
layer equations for all four second-order contributors, i.e. vorticity interaction, 
displacement speed, longitudinal and transverse curvature. These results are 
found to contain all previous self-similar solutions as members of the much 
larger family of solutions presented here. Numerical solutions are presented for 
a large number of cases, and several closed form solutions, which may have special 
significance for the separation problem, are also discussed. 

1. Introduction 
Although it has long been recognized that approximate solutions of the 

Navier-Stokes equations obtained via Prandtl’s boundary-layer concept repre- 
sent only the first term of an asymptotic expansion for large Reynolds numbers, 
it was only within recent history that a consistent higher-order approximation 
has been formulated by Van Dyke ( 1 9 6 2 ~ ) .  This was achieved through the 
recognition that the generalized problem (i.e. solution of the Navier-Stokes 
equation for high Reynolds number) is one well suited to solution by the formal 
perturbation techniques employed in numerous other fields of mechanics. Van 
Dyke’s first paper (1962a) sets down those equations representing the next 
level of approximation (termed the second order) above that of Prandtl’s equa- 
tions for two-dimensional or axisymmetric flow of an incompressible fluid, and 
it is this set of equations with which the present work will deal exclusively. 

Reasons for studying the higher-order effects are as varied as the number of 
investigators who have considered this problem. Aside from the fact that the 
problem is in itself academically intriguing, work at the second-order level is 
desperately needed to gain a better insight into the effects of lower Reynolds 
numbers as they are encountered in high altitude flight and high Mach number 
wind tunnel tosts. Even more basic, though, are questions concerning the nature 
of the second-order contributions near the point of boundary-layer separation, 
and of the modifications necessary to classical boundary-layer stability theory 
due to this new influence. It is hoped that the work contained herein will provide 
the much-needed vehicle for future work in such studies. 

The overall objective of the present work is to conduct a general investigation 

t Also, Applied Aerodynamics Division, U.S. Naval Ordnance Laboratory, Silver 
Spring, Maryland. 
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of the second-order incompressible boundary-layer equations themselves, in an 
effort to define the intrinsic characteristics of their solution sets. To this end, 
analytical and numerical solutions are obtained for a rather general self-similar 
form of the governing equations for all four second-order contributors, i.e. 
vorticity interaction, displacement speed, longitudinal curvature, and trans- 
verse curvature. As pointed out in Van Dyke’s very recent review of higher-order 
boundary-layer theory (1969), most previously obtained self-similar solutions 
(see e.g. Narasimha & Ojlia 1967, Cooke 1966, or Tani 1954) belong to that 
class for which the second-order solutions have the same similarity form as that 
of the first-order solutions (i.e. the Falkner-Skan solutions). The present study 
removes this restriction and subsequently reveals many significant points neces- 
sarily not contained in the more limited earlier studies.? I n  particular. it  is found 
that the vorticity interaction contribution is always self-similar if the first-order 
solution is. For the remaining three contributors, displacement speed, longi- 
tudinal curvature and transverse curvature, it is found that the solutions are 
governed by the three parameters respectively representing the second-order 
pressure gradient, the ratio of longitudinal radius of curvature to the first-order 
displacement thickness, and the ratio of the transverse curvature to  the first- 
order displacement thickness. 

Closed form solutions (in terms of the well documented Falkncr-Skan func- 
tions) are obtained for a limited range. These include several cases with special 
significance at  the point of first-order separation. I n  particular, it is found that 
the displacement speed contribution can proceed through separation with no 
difficulty for two different second-order pressure gradients. For all other second- 
order pressure gradients a singularity occurs, thereby indicating that boundary- 
layer calculations near separation are valid only if proper attention is given to thc 
second-order contributions. Numerical solutions of a large number of cases for the 
longitudinal and transverse curvature effects well support this same conclusion. 
These numcrical studies also show that the second-order contributors can 
apparently become singular for any pressure gradient, be it adverse, neutral or 
favourable, if the second-order parameters take on certain critical values. While 
the closed form solutions discussed above do support this position, the occurrence 
of these singularities is apparently without precedent. Even though an attempt 
is made to  interpret the physical significance of these singularities, the full 
meaning of these phenomena is not at  all understood at  this t8ime. 

2. The boundary-layer equations 
Since Van Dyke’s original paper (1962a) quite clearly sets down the process 

involved iii the formulation of boundary-layer theory t o  second order, there is no 
need torederive the equations here. For reference purposes these will be restated 
in terms of the stream function \/. and standard surface co-ordinate system (s, n) 
depicted in figure 1.  The non-dimensionalizing scheme is identical to that of 

t The authors wish to thank Van Dyke for pointing out  that spccial cases of this more 
general class of solutions was considered earlier by both Seban & Bond (19.51) arid Kilo 
(1953). 
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Van Dyke (19624,  with velocities referenced to the free-stream velocity V,, 
pressures reference to the dynamic pressure pUL, and the Reynolds number 
defined as 

p being the viscosity and L a reference length (frequently taken as ( l / ~ ) ~ = ~ ,  
K being the surface longitudinal curvature). It should be noted that since only 
similar flows are to be considered here, the choice of a reference length is of no 
consequence to the final results. Further recall that basic to the present study 
are the assumptions of constant fluid properties (p  and p) and a uniform main- 
stream (U,) aside from possible external shear. 

FIGURE 1. Non-dimensional co-ordinates for boundary layer. 

Asymptotic expansions are now formed for the inviscid stream function 

$-i(s, n; t.) - 'Pl(s, n) + t.'Iy2(s, n) + . . . 
the s component of velocity 

ui(d, n; e )  N Ul(s, n) +eU2(s, n) + ..., 

vi(s, n; e) N q(s ,  n) + eK(s, n) + . . . , 
pi(s, n; e )  N Pl(s, n) + eP2(s, n) + . . . . 

B,(Y,) = P, + fr( u; + v;). 

(3) 

the ?a component of velocity 

(4) 

( 5 )  and the pressure 

Use is also to be made of the Bernoulli function defined as 

(6) 

These expansions are found to be invalid near the wall (n = 0 ) ,  and subse- 
quently inner expansions are formed by first stretching the normal co-ordinate 

(7) 
to obtain the inner variable, N = nle. 
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The assumed inner (viscous) expansions are 
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@&, n; 4 f$l(S, N )  + +,(s, N )  + . . . , 
u&, n; €1 N ul(s,  N )  + EW&, N )  + . . ., 

and BJS, n; E )  - Evl(s, N )  + e2v2(s, N )  + . . ., 
where 

and u2 + (%) Nu,  = fi 1 m, a$2 

where r, and a, are defined in figure 1, and j = 0 for two-dimensional flows, 
j -- 1 for the axisymmetric case. With these definitions, the governing equations 
and their corresponding boundary conditions are written as: 

first-order , 

(13) 

(14) 

a 
r , ~ f $ , ~  = - r & U l ( s , ~ ) U l 5 ( s , ~ ) ,  

with $l(S, 0) = $,,(S, 0) = 0, 

and IlrlN(S, a) = 4 U,(s, 0); (15) 
second-order, 

a 

d 
- K"$lLvh7N + $Ixfl + roi $ls$lA7I - (4 9(s, 0) 8:) 

[( j cos ro a, - K )  U , ( ~ , O ) + ~ & L J ; ( O ) ]  as ~ + c o .  (18) and $2, (s ,N)-+Nr& ___ 

Since the second-order problem is linear, further study of (16) will employ its 
subdivision into those four components appearing explicitly in the problem (as 
first suggested by Rott & Lenard 1959). These components represent direct 
contributions due to external vorticity ( fl), displacement speed ($:), longitudinal 
curvature ($:), and transverse curvature ($f), leading to the redefinition of 
the second-order stream function as 
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3. The self-similar equations 
Formulation of tho self-similar boundary-layer problem is faced with the 

immediate difficulty of choosing a co-ordinate system in which to work. Kaplun’s 
(1954) study of the eEects of co-ordinate choice on the boundary-layer approxi- 
mations clearly shows that an optimal system can be formulated for the first- 
order boundary-layer problem, but, as pointed out by Van Dyke (1964), the 
rules for finding such at higher-order levels are not yet known. The formulation 
employed here will make use of one of the more standard sets of dependent 
variables. Gortler’s (1957) variables are one of the more attractive available, 
since they produce a rather compact form for both the two-dimensional and 
axisymmetric boundary-layer equations, and further may be easily generalized 
to the compressible problem via the Levy-Lees definitions (see Lees 1956). 
Thus, for the present study, the dependent variables will be taken ast 

Introduction of the above transformation, along with further change of the 
dependent variable to its usual similarity form, 

11.1 = d(25)f(r), (21) 

( 2 2 )  

produces the familiar Falkner-Skan equation 

f” + f f  ” + B( 1 -f’2) = 0, 

where (23) 

A rather general form (which excludes the classical internal flows) of the self- 
similar second-order equations is obtained by defining the respective stream 
functions as 

vorticity , 

displacement speed, 

longitudinal curvature, 

25 
r% Ul transverse curvature, $; = --g4(7)* 

Further definition of the operator L as 

d3 d2 d 
L r - + + f  - - a j f ’ - + h j f ” ,  ( j =  1,  ..., 4) 

dy3 dq2 dv 

(24) 

t In tho interest of eliminating repetition, the inviscid properties ovaluatcd a t  = 0 
(for example, U,(s, 0) or U,(s,  0)) will henceforth be written without their arguments 
(for example, U ,  or U 2 ) .  
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allows the four second-order problems to be written as 
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Lg, = Cf, (29) 

gj(o) = gi(0) = 0 (30) 

and g;(Y)+q?) as r-tm. (31) 

with the boundary conditions specified as 

The appropriate ai, b,, Gj and 4. are given in table 1 with the definition of all 
terms involved. It is seen that in this form the problem is ideally suited to the 
numerical solution of the governing equations as is required in general.? 

j Definitions aj b, pj uj 
1 External vorticity 1 Z ( 1 - P )  11 - A1 

2 Displacement speed 

77 % dU,  
- u, dg 

3 Longitudinal curvature 

4 Transverse curvaturc r [ f f” -  (1 +7w2 

TABLE 1. Definitions for self-similar second-order boundary layers. 

4. The boundary-layer functions 
A straightforward application of the functional definitions given in (21) and 

(24) through (27) to the shear stress and displacement thickness definitions (see 
Werle & Davis (1966) for the proper definition of 8* to second order) results in 
the following expressions: 

shear stress, 

t Using thc sel€-similm form of the first-order displacement thickness, it may bc shown 
that the longitudinal curvature problem can be stated entirely in terms of the product 
K ~ T ,  instead of the parameter n3, and that the transvorso curvature problem can be stated 
in terms of S: cos a,/.; instead of 7r4. While such a formulation might appear more compact, 
the present studics will be conducted in terms of the n3, so that curvature and pressure 
gradient cfr’ccts may be considered independently. 
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and displacement thickness, 

where the following definitions have been applied throughout 

A, = lim (7 - j ) ,  
7-m 

A; = lim ( &r2 - g,) - 2 LA2 1, 
9-03 

A: = lim (q - 9,) - A,, 
7-m 

A: = lim (472 + g3) - +A‘$, 

AT = lim ( + q 2 -  g4) - +A:. 
7-m 

v+m 
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A consistent definition of the momentum thickness to second order has been 
proposed by Werle & Davis (1966) and evaluated by Werle (1968). 

5. Exact relations for the second-order equations 
Since, in general, the solutions of the similarity equations given in ( 2 9 )  and 

table 1 must be obtained by numerical integration techniques, it is apparent 
that any exact relations which might be obtained would be quite useful. 

Considering the displacement speed equations, it is found that two sets of 
solutions may be written in terms of the first-order functionf, for specific distri- 
bution of 7rz as a function of P. The first of these is for the case of 7rz = P, for 
which the governing equation becomes 

d; + fg; - 2Pf ’9; + f llg, = - 2p. 

gz = t (7 f ’  +f )- 

(35) 

It is easily verified that the solution of this equation for any p is given by 

(36) 

This result was previously given by Van Dyke (19623) for the specific cases of 
P = + and 1 (corresponding to flows at axisymmetric and planar stagnation 
points respectively) and by Kuo (1953) for ,8 = 0 (corresponding to flow over 
a cusped leading edge). The present investigation indicates the result holds for 
any /3 so long as r2 = P. In  particular, it implies that if 7~~ = P,,, = - 0.198838, 
i.e. the first-order boundary is at its separation point, then the second-order 
boundary layer is perfectly well behaved, and in fact the shear due t o  displace- 
ment speed, as given by 

is also zero. 
gi(0) = $f”(O), (37) 

A second set of exact solutions may be obtained for that class of flows for which 

772 = 2(P- I), (38) 

but P *  0, (39) 
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for which the governing equation reduces to 
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d; +fd + (2 - 3P)f'sl- (1 -P) f "g ,  = (2 - 3 4 ,  

92 = (1IP) [ (P-  1)7?f'+fl. 

(40) 

(41) 

and its solution is given by 

This result includes that found by Van Dyke (1962 b) for the flow in the leading 
edge region of a blunt body with asymmetry, which is reproduced by (41) for 

The soIution given by (41) is of interest for two specific reasons. First, it is seen 
p =  1. 

that the shear stress for this case, given by 

2p- 1 
g p 3 )  = --f"(O), P 

suffers an infinite discontinuity across p = 0, for which case n2 = - 2. The physical 
significance of this result is not at all understood, but it is precisely the type of 
result which later will be found to occur in the numerical analysis for all n2 at  
some specific p. 

A second interesting point, concerning the solution given by (41), is the be- 
haviour of the solution near separation (i.e. /3 = - 0.198838). As shown by (42), 
the shear stress vanishes at this point and, again, it  is seen that one can arrive 
at  separation without the second-order effects causing any new difficulty. 

6. Numerical solutions of the similarity equations 
The solutions of the second-order similarity equations (see (29) and table 1) 

have been obtained by numerical integration for a wide range of /3 and the 7~~'s.t 
These solutions were obtained on an IBM 7094 computer using a single pre- 
cision fourth-order Runge-Kutta scheme with a constant step size of AT = 0.06 
throughout.$ The necessary numerical solutions to the Palkner-Skan equation 
were obtained using Smith's (1954) values of f"(0) to start the integration. 

As previously mentioned, the vorticity problem introduces no new parameters 
and, thus, these solutions may be tabulated once and for all for any P of interest. 
Table 2 presents such a listing of the second-order shear and displaccment 
thickness for all available values of p. These results are also presented grapliically 
in figures 2(a) and (b), along with typical velocity profiles in figure 3. Each of 
these figures shows clearly that the direct contribution of vorticity to  the 
seeond-order boundary layer is quite small in the presence of strong favourable 
pressure gradients but becomes increasingly significant as separation is ap- 
proached. The singular nature of the results near separation is a clear indication 
the first-order solutions are no longer valid in this region, since the second-order 
effects apparently grow to first-order size. Figure 4 shows that near separation 
this singularity is approached according to 

t All of the numerical results presented graphically in this paper are presented in 

1 In general, calculations near /3 = 2 rcquired double precision arithmetic to produce 
tabular form by Werle (1968). 

rneanirigful secortd-ordcr displacement and momentum thickness. 
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Numerical solutions to the displacement speed problem are presented in 
figures 5 (a )  and ( b )  for the full range of - 2-5 < rz < 2.0. These results have been 
verified directly through comparison with the 'exact' solutions discussed above 
(these cases are pointed out in figure 5 when appropriate). 

P 
2.0 
1.6 
1.2 
1.0 
0.8 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.05 
0.04 
0.03 
0.02 
0.01 
0.008 
0.006 
0.004 
0.002 
0.001 
0 

- 0.05 
-0.10 
- 0.14 
-0.16 
-0.18 
-0.19 
- 0.195 
- 0.198838 

s m  
1.1106 
1,1979 
1,3214 
1.4065t 
1,5172 
1-6688 
1.7 6 8 6 t 
1.8930 
2,0537 
2,2720 
2.5918 
2.8191 
2.8729 
2.9300 
2.9909 
3.0561 
3.0697 
3.0834 
3.0974 
3.1116 
3.1188 
3.1260$ 
3.5729 
4.3154 
5.4795 
6.6329 
9.2569 

13,1530 
19.4652 

00 

A., 
- 0.0279 
- 0'1582 
- 0'3086 
- 0'4252 
- 0.5919 
- 0-8447 
- 1.0255 
- 1.2656 
- 1.5979 
- 2'0860 
- 2,8697 
- 3.4709 
- 3.6180 
- 3.7763 
- 3.9474 
- 4.1328 
-4.1717 
-4-2114 
- 4'2517 
- 4.2927 
- 4.3137 
- 4.3344 
- 5.6865 
- 8.1414 
- 12.3960 
- 16.9689 
- 28.2142 
- 46.0875 
- 76.3405 

--oo 

t Originally given by Van Dyke (19626). 
2 Originally given by Murray (1961). 

TABLE 2. Vorticity interaction solutions. 

Considering e.g. the shear stress distributions of figure 5 (a) ,  it is seen that the 
first-order separation point evidently represents a singularity in the second- 
order quantities for all but two values of mz corresponding to mz = -0.198838 
and mz = - 2.397676, a result implied by the 'exact' solutions given in (37) 
and (42)' respectively. Since (32) gives the displacement speed contribution t o  
the shear stress as 
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0, 
27-4 
SI 

z 

FIGURE 
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-0.2 0 0-2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

P 

" 
-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

P 
2. Vorticity int>eraction solutions : (a )  shear stress, (6) displacement Lhickness. 

18 

d ( r )  
FIGURE 3. Vorticity interaction solutions : velocity profiles. 

20 
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for these two special cases one could seemingly arrive at the separation point 
with zero second-order shear so that; the ordering scheme (in Reynolds number) 
would be preserved. For those solutions with singularities only a t  p = psep, it 
has been found that, as in the vorticity interaction problem, the second-order 
shear stress apparently approaches the limit variation of (43). 

P -Pee, 

FIGURE 4. Vorticity interaction solutions : shear stress variation near P = 

Another rather interesting (and equally surprising) result of this present study 
was the appearance of singularities in all the second-order functions for n2 < 0 
at p > psep (see e.g. figure 5 (a), n, = - 2). The occurrence of such is not; un- 
precedented since (42) has already served notice that this would occur at  p = 0, 
n2 = - 2 .  A simple trial and error iterative scheme has been used better to locate 
the singularities, and the resulting variation of the critical value of n, is given 
in table 3 and figure 6 .  Note that it can be shown that the second-order pressure 
gradient is proportional to (p+7r2) U,lU,, so that, if near n2,,,(p+n2 z - 2 

according to table 3) U, > 0 ,  then there exists a relatively strong adverse pressure 
gradient. For this case, (44) gives 72d, < 0, which presumably indicates an early 
separation point,? as might be expected. On the other hand, the case of U, < 0 
produces rather confusing results, for here the second-order pressure gradient is 
favourable, and rgW > 0 indicates delay of separation. The occurrence of the 
singularities then implies a breakdown in the boundary-layer assumptions not 
necessarily associated with separation, and as yet completely unexplainable. 

t Note that, near the critical values, g;(O) is generally negative. 
23 P L M  40 
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B 
P 

-0.2 -0.1 0 0.1 0.2 0.3 

- 20' 

I 
1.6 1.8 2.0 

P 
FIGURE 5. Displacement speed solutions: (a )  shear stress, 

( b )  displacement thickness. + exact solutions of § 5. 
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Numerical solutions to the longitudinal curvature problem have been obtained 
for all available p and n3 ranging from 2.0 to - 3.5. The results of these studies 
are given in figures 7(a)  and (b ) .  As for the displacement speed problem, it is 
seen that the contribution is at  a minimum for a strong positive pressure gradient 
and grows progressively larger as separation is approached. Here also it is found 
that a singularity occurs at separation for all but two values of n,, given approxi- 
mately as - 1-5 < m3 < - 1.0 and - 3.5 < n, < - 3-0, possibly indicating the 
existence of well behaved boundary layers right up to separation, Again, it  was 
found that those solutions with singularities only at /3 = PSB,,, closely follow 
the relation given in (43). 

P 
2.0 
1-6 
1.2 
1.0 
0-5 
0.2 
0.1 
0 

- 0.1 
- 0.16 
- 0.18 
- 0-19 
-0.195 

nzerlt 

-4.134 
- 3.729 
- 3.323 
-3.118 
- 2.592 
- 2.254 
- 2.133 
- 2.000 
- 1.845 
- 1.719 
- 1.659 
- 1.616 
- 1.585 

RZcrit + P 
-2.134 
-2.129 
- 2.123 
-2.118 
- 2.092 
- 2'054 
- 2'033 
- 2.000 
- 1.945 
- 1.879 
- 1.839 
- 1.806 
- 1.780 

TABLE 3. Critical values of second-order parameters. 

- 4.4 

- 4.0 

-3.6 

- 3.2 

- 2.4 

- 2.0 

- 1.6 

- 

Pmit 

FIGURE 6 .  Critical parameter values for the displacement speed problem. 
23-2 
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P 
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Quite naturally, the present solutions imply that the second-order equations 
are very sensitive to the rate of change of curvature (note from table 1 that n3 
is essentially a measure of the rate of change of curvature). Carrying this idea 
one step further, one may consider the case of n3 = 0 (i.e. K = constant as on 
a cusped leading edge or a cylinder); for the concave case, the shear stress contri- 
bution, given in (32) as 

is positive, thereby indicating a delay in separation. The convex case ( K  > 0) 
of course experiences a decrease in shear, and thus predicts an earlier separation 
as would be expected. Further, if n3 > 0 (roughly corresponding to the indicated 
geometries of figure 8), then convex curvature experiences even earlier separation 
(since at  a given p ,  g:(O) is larger negative for n3 > 0 than for n3 = 0 ) ,  while the 
case of n3 < 0 experiences a further delay of separation over thak for n3 = 0.f 

7Fw = K q g m  (45) 

Convex curvature Concave curvature 

FIGURE 8. Flow geometries indicative of constant 7r3: 
(a )  n3 < 0, (6) n8 = 0, (c) i.r, > 0. 

Most interesting are the results predicted for n3 < 0, corresponding to a region of 
relatively rapid decrease in curvature (n3 = -a would be roughly equivalent 
to a line tangent to the circle depicted in figure 8). The appearance of singularities 
at /I > /IsBsep for these cases evidently lends some credence to the suspicion that 
the boundary-layer equations are invalid in regions of discontinuous body 
curvature. 

For the sake of completeness, trial and error studies were conducted to define 
the locations of the above mentioned singularities, and it was found that, within 
the accuracy of the solution, the critical values of n3 are given by 

Figures 9 ( a )  and (b) present solutions of the transverse curvature equation for 
all available /I and n4 ranging from -3.5 to 2.0. Due to the similarity of the 
longitudinal and transverse curvature equations (see table l), it is not surprising 
to find the essential features of the solutions very nearly the same (compare 
-gJ(O) of figure 7 with qi(0) of figure 9). Here again it is found that the second- 
order contribution is at a minimum for strong favourable pressure gradients 
and grows progressively larger as separation is approached. There evidently 
exists but one single value of n4, however, for which the separation point does 
not represent a singularity, and this occurs between n4 = - 1.5 and - 2.0. Again 

t Both theso results would, of course, be reversed for the concave curvature case. 
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one is led to the conclusion that for this value of rr4 the boundary-layer assump- 
tions would remain valid throughout the separation process, while all remaining 
cases approach separation according to the now familiar relation 

s m  cc (P-P*,p)-"'"". (47) 

-0.2 -0.1 0 ' 0.1 0.2 0.3 

4 

2 

0 
h s 
P, - 2  x - v  

- 4  

-6 
-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 4  

P 

2 

1 

0 Rc4 a 

- 1  

-2 
-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

P 
FIGURE 9. Transverse curvature solutions : (a)  shear stress, ( b )  displacement thickness. 
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Further review of figures 9 (a )  and (b)  clearly indicates the existence of singu- 
larities quite similar to those occurring for the displacement speed and curvature 
problems. Trial and error solutions were employed to better locate the critical n4, 
and it was found that to within three decimal places 

(48) - 
=4,,,, - ='%,it - 

with n2,,it given in table 3. The physical significance of these singularities is 
explainable, on a limited scale, through consideration of the series of typical 
axisymmetric flow geometries depicted in figure 10. For all these flows 
cosa,,/r, > 0, so that the shear stress (see (32)) has the same sign as g:(O). Com- 
paring figure 10 and the shear stress distributions of figure Q ( a ) ,  it is evident 
that, as one moves from n4 > 0 (case (a)  of figure 10) to n4 < 0 (case (c)), the 
shear stress becomes less positive, indicating that the transverse ourvature effect 
is becoming less effective in delaying separation. Finally, though, as r4 becomes 
< 0 (case ( d ) ) ,  the second-order contribution actually begins to promote earlier 
separation (when qi(0) becomes < 0). Evidently the appearance of the singu- 
larities for /3 > PseB signals the breakdown of the boundary-layer equations €or 
regions in which the transverse curvature changes rapidly. 

FIGURE 10. Flow geometries indicative of constant rp:  
(a )  "4 > 0, ( 6 )  "q = 0, (c) 714 < 0, ( d )  "4 < 0. 

7. Discussion of results 
The preceding sections have sought to give some insight into the characteristics 

of higher-order boundary-layer theory through study of the appropriate self- 
similar form of the governing equation. The major contribution of the present 
study is perhaps that it allows some insight into the nature of the governing 
equations themselves. 

It was interesting to find that, while in general the approach to separation 
caused singularities to appear in the second-order contributions, there were 
isolated cases in which this did not occur. The appearance of singularities near 
separation was not at all surprising, since it lends some support to the growing 
belief that the boundary-layer equations themselves are not valid in this region. 
More intriguing, though, is the fact that both the exact solutions and the 
numerical studies show clearly that certain combinations of parameters will 
allow separation to be approached with no difficulty, and that for these cases 
the second-order shear vanishes completely. This result lends strong support 
to the discovery of Catherall & Mangler (1966) that the appearance of the 
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singularity in the first-order equations near separation may well be unrealistic, 
and due solely to the misrepresentation of the true pressure gradient in this 
region. The present self-similar solutions clearly imply that, under certain con- 
ditions, the point of zero shear (now to second-order, since the respective g ” ( 0 )  
vanish) can be attained with no new difficulty introduced by the second-order 
contributors. The full significance of this result is not completely understood 
at  the present time, but certainly it indicates one area in which further research 
could well prove fruitful. 

By far the most surprising aspect of the self-similar solutions generated here 
was the appearance of singularities in all the second-order quantities prior to 
first-order separation. To the authors’ knowledge, there is no precedent for this 
result, and only a limited rationale for its occurrence can be given at  this time, 
As was indicated, these singularities appear in regions of large negative n3., 
corresponding to regions of rapid change in either longitudinal or transverse 
curvature, and to regions of large second-order pressure gradients. The presence 
of the singularities certainly indicates that the self-similar results are no longer 
of second order, but it is not yet clear how to relate their occurrence to physical 
situations. 
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